Vector
A vector is alternate notation for an n tuple, so that \[ \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \] is the n-tuple \( (a_1, a_2, \ldots, a_n ) \)
The length of a Vector
Given \( x \in \mathbb{R}^n \), then we define the it's length as \[ \lVert x \rVert := \sqrt{ \sum _ { i = 1 } ^ n x _ i ^ 2 } \]
Dot Product
Given two sequences of numbers of the same length: \( a = \left ( a_{1} , \ldots , a_{k} \right ) \) and \( b = \left ( b_{1} , \ldots , b_{k} \right ) \), their dot product denoted and defined by \[ a \cdot b = \sum_{i = 1}^{k} a_{i} \cdot b_{i} \] Note that \( \cdot : \mathbb{R}^{k} \times \mathbb{R}^{k} \to \mathbb{R} \)
Dot Product Geometric
\[ a \cdot b = \lVert a \rVert \lVert b \rVert \cos \left( \theta \right) \] where \( \theta \) is the angle between \( a, b \)
Norm Squared is the Dot Product
For any \( x \in \mathbb{ R } ^ n \) we have that \[ \lVert x \rVert ^ 2 = x \cdot x \]
vector form of a line
Suppose that \( d , p \) are vectors, then we say that the set \( l := \left \lbrace x : x = t d + p , \text{ for some } t \in \mathbb{R} \right \rbrace \) is a line and say that the vector equation for the line is
\( x = t d + p \)
We also say that \( d \) is the direction vector for \( l \)
Cross Product
Given two vectors \( a, b \in \mathbb{ R } ^ 3 \) we define their cross-product to be \[ a \times b := \lVert a \rVert \lVert b \rVert \sin \left( \theta \right) n \] where \( \theta \) is the angle between \( a \) and \( b \) and \( n \) is a unit vector such that \( a , n , b \) is positively oriented.
Cross Product Vector Component Formula
\[ \left( a _ 1 , a _ 2, a _ 3 \right) \times \left( b _ 1, b _ 2, b _ 3 \right) = \left( a _ 2 b _ 2 - a _ 3 b _ 2, a _ 3 b _ 1 - a _ 1 b _ 3, a _ 1 b _ 2 - a _ 2 b _ 1 \right) \]
Collinear
Given a vector space \( \left( V, F \right) \) then we say that two vectors \( x, y \in V \) are collinear if there exists an \( \alpha \in F \) such that \[ x = \alpha y \]
Parallelogram Law
Suppose \( x, y \in \mathbb{ R } ^ n \) then we have \[ \lVert x + y \rVert ^ 2 + \lVert x - y \rVert ^ 2 = 2 \lVert x \rVert ^ 2 + 2 \lVert y \rVert ^ 2 \]
\[ \begin{align} \lVert x + y \rVert ^ 2 + \lVert x - y \rVert ^ 2 &= \left( x + y \right) \cdot \left( x + y \right) + \left( x - y \right) \cdot \left( x - y \right) \\ &= x \cdot x + 2 x \cdot y + y \cdot y + x \cdot x - 2 x \cdot y + y \cdot y \\ &= 2 x \cdot x + 2 y \cdot y \\ &= 2 \lVert x \rVert ^ 2 + 2 \lVert y \rVert ^ 2 \end{align} \]
The Norm of The Half of The Sum of Two Unit Vectors is One iff They are Equal
Suppose \( x, y \in \mathbb{ R } ^ n \) such that \( \lVert x \rVert = \lVert y \rVert = 1 \) then \[ \left\lVert \frac{x + y}{2} \right\rVert = 1 \iff x = y \]
\( \implies \) Suppose that \( \left\lVert \frac{x + y}{2} \right\rVert = 1 \) we'd like to prove that \( x = y \), thus it's equivalent to show that \( \lVert x - y \rVert = 0 \), recall that from the parallelogram law that \[ \lVert x - y \rVert = \sqrt{ 2 \lVert x \rVert ^ 2 + 2 \lVert y \rVert ^ 2 - \lVert x + y \rVert ^ 2 } \] thus it's enough to show that \( 2 \lVert x \rVert ^ 2 + 2 \lVert y \rVert ^ 2 - \lVert x + y \rVert ^ 2 = 0 \), which means we just have to show that \( \lVert x + y \rVert ^ 2 = 2 \lVert x \rVert ^ 2 + 2 \lVert y \rVert ^ 2 \), moreover \( x, y \) were unit vectors so we have \( \lVert x \rVert = \lVert y \rVert = 1 \) and we now just need to prove that \( \lVert x + y \rVert ^ 2 = 4 \). We've assumed that \( \left\lVert \frac{x + y}{2} \right\rVert = 1 \), this means that \( \lVert x + y \rVert = 2 \) thus we conclude that \( \lVert x + y \rVert ^ 2 = 4 \) as needed.

\( \impliedby \) Suppose that \( x = y \), then \[ \left\lVert \frac{x + y}{2} \right\rVert = \left\lVert \frac{2x}{2} \right\rVert = \lVert x \rVert = 1 \] as needed.

Cosine Law
Suppose that \( x, y \in \mathbb{ R } ^ n \) and \( \theta \) is the angle between them, then \[ \lVert x + y \rVert ^ 2 = \lVert x \rVert ^ 2 + 2 \lVert x \rVert \lVert y \rVert \cos \left( \theta \right) + \lVert y \rVert ^ 2 \]
This follows from distributivity of the geometric interpretation of the dot product \[ \begin{align} \lVert x + y \rVert ^ 2 &= \left( x + y \right) \cdot \left( x + y \right) \\ &= x \cdot x + 2 x \cdot y + y ^ 2 \\ &= \lVert x \rVert ^ 2 + 2 \lVert x \rVert \lVert y \rVert \cos \left( \theta \right) + \lVert y \rVert ^ 2 \end{align} \]
Dot Product Is a Sum of Norms
\[ x \cdot y = \frac{\lVert x + y \rVert ^ 2 - \lVert x \rVert ^ 2 - \lVert y \rVert ^ 2}{2} \]
Rearrange this.